

Mathematics Tutorial Series

Differential Calculus #10

The Tangent and Secant functions + Quotient Rule

The tangent function is formally defined by

$$\tan x = \frac{\sin x}{\cos x}$$

Note: the word "tangent" is recycled here. We now have tangent lines and also tangent functions.

So $\tan x$ has value 0 whenever $\sin x$ does and has a vertical asymptote whenever $\cos x = 0$.

Here

 $y = \tan x$ is blue,

 $y = \sin x$ is **red** and

 $y = \cos x$ is green.

The blue vertical lines indicate vertical asymptotes of the tangent function.

The function $\tan x$ is a periodic function that takes on every real value. This means that for every y you can find a value of x such that $\tan x = y$.

BUT ALSO we can always take
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$

Hence $\tan x$ can be used in a model where we want to have a bounded set (domain) mapped to the whole real axis.

Definition: The **secant of x** is defined by

$$\sec x = \frac{1}{\cos x}$$

Since $\cos x$ is always between -1 and +1, the value of $\sec x$ is always $\geq +1$ or ≤ -1 .

The graph is as follows:

Used mainly as a technical tool to express derivatives and integrals simply.

Quotient Rule for Differentiation

Suppose we want to find the derivative of a quotient

$$p(x) = \frac{f(x)}{g(x)}.$$

We can write this as:

$$P(x) = f(x) \cdot g(x)^{-1}$$

This is a product so we reach for the Product Rule. Also the derivative of $g(x)^{-1}$ uses the Chain Rule.

$$(g(x)^{-1})' = -1 \cdot g(x)^{-2} \cdot g'(x)$$

[This is like the derivative of u^{-1} where u = g(x)]

All together

$$p' = f'g^{-1} + f \cdot (-1)g^{-2}g'$$
$$= \frac{f'g}{g^2} - \frac{fg'}{g^2}$$

$$=\frac{f'g-fg'}{g^2}$$

The Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Derivative of tan x

The main example of the quotient rule is:

$$\tan x = \frac{\sin x}{\cos x}$$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

Hence $(\tan x)' = \sec^2 x$

Here $\tan x$ is green and $\sec^2 x$ is blue.

Derivative of sec x

By definition $\sec x = (\cos x)^{-1}$.

Then, by the Quotient Rule, the derivative is:

$$(\sec x)' = (-1) \cdot (\cos x)^{-2} \cdot (\cos x)'$$

$$= (-1) \cdot (\cos x)^{-2} \cdot (-\sin x)$$

$$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$$

$$= \sec x \cdot \tan x$$

Hence (sec x)' = sec x tan x

Summary

	Domain	Range
Sin x	x can be any real number	$-1 \le y \le +1$
Cos x	x can be any real number	$-1 \le y \le +1$
Tan x	x can be any real number except values making $\cos x = 0$ So Any x except odd multiples of $\frac{\pi}{2}$	y can be any real number

Derivatives of Trig Functions: If we measure x in radians then:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(\tan x)' = \sec^2 x$$
$$(\sec x)' = \sec x \tan x$$

The Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$